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We want to show R∗ is compact. So, let {Oα}α ⊇ R∗ be a covering of R∗ by open
sets, and we want to show a finite subcollection of these sets also covers R∗. Then one of
these sets, call it O1, contains ∞: and since O1 is open (i.e. is a union of open intervals),
O1 contains some whole interval (b,∞] for some b ∈ R. Similarly, there is an O2 containing
some whole interval [−∞, a) for some a ∈ R.

It remains to show that a finite number of the sets {Oα}α covers [a, b]. But the sets
{Oα ∼ {−∞,∞}}α are open in R and cover [a, b]. (The point is, if [−∞, c) is open in R∗

then (−∞, c) is open in R, and similarly for (c,∞]). Since [a, b] is compact in R, a finite
subcollection of {Oα∼{−∞,∞}}α covers [a, b], and thus a finite subcollection of {Oα}α also
covers [a, b].
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Given measures µ and ν on set X, and a, b ∈ [0,∞], we want to show aµ+ bν is also a
measure on X. It’s all very easy, and we’ll just prove subadditivity. If {Aj} be a countable
collection of subsets of X then

(aµ+ bν)

� ∞�

j=1

Aj

�
= aµ

� ∞�

j=1

Aj

�
+ bν

� ∞�

j=1

Aj

�

� a

∞�

j=1

µ (Aj) + b

∞�

j=1

ν (Aj)

=
∞�

j=1

(aµ+ bν) (Aj) .

Given a collection {µα}α∈I of measures on a set X, we want to show µ defined by

µ(A) = sup
α∈I

µα(A) ,

is also a measure on X. Again, we just prove subadditivity. Given a countable collection
{Aj} of subsets of X we have, for any µα,

µα

� ∞�

j=1

Aj

�
�

∞�

j=1

µα (Aj) �
∞�

j=1

µ (Aj) .

Taking the sup of the LHS over all α ∈ I, we find µ

��∞
j=1 Aj

�
� �∞

j=1 µ (Aj), as desired.
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(a) We want to show that if C ⊆ D ⊆ R∗ then inf(C) � inf(D) and sup(C) � sup(D).
Well just show the first inequality.

Let α = inf(C) and β = inf(D). Since C ⊆ D, any lower bound for D is also a lower
bound for C; thus β (the greatest lower bound for D) is a lower bound for C. But
since α is the greatest lower bound for C, we must have α � β.

(b) Given a, b ∈ R∗, and a � b + � for every � > 0, we want to show a � b. Suppose not,
and thus that a > b. This is clearly impossible if a, b = ±∞. Otherwise, set � = a−b

2 ,
implying

a � b+ � = b+
a− b

2
=

a

2
+

b

2

=⇒ a � b .

Thus the hypothesis that a > b in any case leads to the conclusion that a � b.

10 We want to repeat the Cantor set construction, but to wind up with a set D with
L (D) > 0. For each n, we choose a tn with 0 < tn < 1. Then, at the n’th stage, (1− tn) is
the fraction we remove from each interval Inj to form the intervals In+1,2j−1 and In+1,2j. (So,
the Cantor set is obtained by setting each tn = 2

3). Then, Dn is the union of 2n intervals Inj
with

l(Inj) =
t1

2
· t2
2
· · · tn

2
=

1

2n

n�

i=1

ti j = 1, . . . , 2n.

Now, we choose the tn (see below) such that

(∗)
∞�

n=1

tn = α > 0 ,

and set D =
∞�

n=1

Dn. We then want to show L (D) = α.
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The � is immediate from the definition of L , and the equality is immediate if we use
Proposition 5(a), Theorem 6 and Theorem 8(b). However, we can also obtain equality using
only Proposition 5(a). Notice that all of the open intervals we have removed form a covering
of [0, 1]∼D. Thus,

L ([0, 1]∼D) � (1− t1) + t1(1− t2) + t1 · t2(1− t3) + . . .

But this sum telescopes, and we see

L ([0, 1]∼D) � 1−
∞�

n=1

tn = 1− α .

Then, by Proposition 5(a) and subadditivity

L (D) � L ([0, 1])− L ([0, 1]∼D) � 1− (1− α) =
∞�

n=1

tn ,

as desired.

It remains to choose the tn to satisfy (∗), but this is quite easy. Fix β > 0 and set

tn = e
− β

2n . Then
n�

j=1

tj = e

−β

�
n�

j=1

1
2j

�

=⇒
∞�

j=1

tj = e
−β

.

So, we can arranged for D to have any desired measure L (D) = α ∈ (0, 1) by setting
β = − logα.

We want to show null sets of a measure µ on a set X are measurable. So, fix A ⊆ X

with µ(A) = 0, and consider B ⊆ X. Then B ∩ A ⊆ A and B ∼ A ⊆ B. Thus, by
monotonicity,

µ(B ∩ A) + µ(B∼A) � µ(A) + µ(B) = 0 + µ(B) = µ(B) .
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12 µ is a measure on X and B ⊆ X.

(a) We want to show µwB is a measure. Obviously µwB(∅) = µ(B ∩ ∅) = 0. For mono-
tonicity, we note that if A ⊆ C then

µwB(A) = µ(B ∩ A) � µ(B ∩ C) = µwB(C) (since B ∩ A ⊆ B ∩ C).

For countable subadditivity,

µwB

� ∞�

j=1

Aj

�
= µ

�
B ∩

∞�

j=1

Aj

�
= µ

� ∞�

j=1

(B ∩ Aj)

�
�

∞�

j=1

µ (B ∩ Aj) =
∞�

j=1

µwB (Aj) .

(b) Given A ⊆ X is µ-measurable, we want to show that A is µwB-measurable. If C ⊆ X

then

µwB(C ∩ A) + µwB(C∼A) = µ(B ∩ C ∩ A) + µ(B ∩ C∼A)

= µ(B ∩ C) (A is µ-measurable)

= µwB(C) .

(c) Given B is µ-measurable and A ⊆ B is µwB-measurable, we now show A is µ-
measurable. If C ⊆ X then

µ(C ∩ A) + µ(C∼A)

=µ(C ∩ A) + µ(C ∩ B∼A) + µ(C∼A∼B) (B is µ-measurable)

=µ(B ∩ C ∩ A) + µ(C ∩ B∼A) + µ(C∼B) (since A ⊆ B)

=µwB(C ∩ A) + µwB(C∼A) + µ(C∼B) (definition)

=µwB(C) + µ(C∼B) (A is µwB-measurable)

=µ(C) (B is µ-measurable)
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Given a measure µ on a set X, we want to show Nµ is a σ-algebra, where

Nµ = {A ⊆ X : µ(A) = 0 or µ(∼A) = 0} .

Trivially ∅ ∈ Nµ, and Nµ is closed under complements. So, we just have to show Nµ is
closed under countable unions. Let {Aj} be a sequence of sets in Nµ.

First suppose that µ(Aj) = 0 for every j. Then, by countable subadditivity,

µ

� ∞�

j=1

Aj

�
�

∞�

j=1

µ(Aj) = 0.

Thus
�

j Aj ∈ Nµ.

On the other hand, suppose that µ(∼An) = 0 for some n. Then, by de Morgan,

∼
� ∞�

j=1

Aj

�
=

∞�

j=1

(∼Aj) ⊆ ∼An

=⇒ µ

�
∼

∞�

j=1

Aj

�
� µ(∼An) = 0 .

Therefore ∼
��

j Aj

�
∈ Nµ, and thus again

�
j Aj ∈ Nµ.

Let µ =
�
q∈Q

µq where µq is the Dirac measure at q. So, µ counts the rationals. Now

let ν = 2µ. Then µ and ν are both Borel (since all sets are measurable with respect to
counting measure), and they are both infinite on any open set. However, they obviously
differ on any finite set of rationals, and thus differ on a closed (and therefore Borel) set.
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18 We want to show that if D ⊆ R and L (D) > 0 then D contains a non-measurable
set E. We begin with the well-known Vitali construction of a Lebesgue non-measurable
subset M of [0, 1]. So, for x and y in R, we define an equivalence by x ≡ y if x − y ∈ Q.
Then, we use the Axiom of Choice to form a set M ⊆ [0, 1] with exactly one element from
each equivalence class of [0, 1]. To show M is not measurable, consider the sets M + q for
the countable q in Q ∩ [−1, 1]. Then it is easy to see that these sets are disjoint, and that

[0, 1] ⊆
�

q∈Q∩[−1,1]

M + q ⊆ [−1, 2] .

But if M were measurable then M + q would be as well, by the translation invariance of L .
So, we would have

1 = L ([0, 1]) �
�

q∈Q∩[−1,1]

L (M + q) = L




�

q∈Q∩[−1,1]

M + q



 � L ([−1, 2]) = 3 .

The translation invariance of L would then imply

1 �
�

q∈Q∩[−1,1]

L (M + q) � 3 .

But since the sum can only be 0 or ∞, this is impossible, and M must be non-measurable.

Now, given D ⊆ R with L (D) > 0, by countable subadditivity D intersects some interval
[n, n+1] in a set of positive measure. So, replacing D by intersection with that interval and
translating, we can assume D ⊆ [0, 1]. Now, with M as constructed above, note that

0 < L (D) = L




�

q∈Q∩[−1,1]

D ∩ (M + q)



 �
�

q∈Q∩[−1,1]

L (D ∩ (M + q)) .

Thus, for some r ∈ Q∩ [−1, 1], M + r intersects D in a set of positive measure. We now set

E = D ∩ (M + r) .

We now claim E is non-measurable. Supposing otherwise, then by translation invariance
each E + q would be measurable and of positive measure. And, as as for the Vitali set, we
could then calculate

∞ =
�

q∈Q∩[−1,1]

L (E + q) = L




�

q∈Q∩[−1,1]

E + q



 � L ([−1, 2]) = 3 .

This contradiction shows that E is non-measurable, and we’re done.
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